CLICK HERE FOR BLOGGER TEMPLATES AND MYSPACE LAYOUTS

Sabtu, 13 Juni 2009

Lumpur Pemboran dan Fungsinya

Lumpur Pemboran

Lumpur umumnya campuran dari tanah liat (clay), biasanya bentonite, dan air yang digunakan untuk membawa cutting ke atas permukaan. Lumpur berfungsi sebagai lubrikasi dan medium pendingin untuk pipa pemboran dan mata bor. Lumpur merupakan komponen penting dalam pengendalian sumur (well-control), karena tekanan hidrostatisnya dipakai untuk mencegah fluida formasi masuk ke dalam sumur. Lumpur juga digunakan untuk membentuk lapisan solid sepanjang dinding sumur (filter-cake) yang berguna untuk mengontrol fluida yang hilang ke dalam formasi (fluid-loss).

Sistem yang paling penting di rig adalah sistem sirkulasi lumpur pemboran. lumpur pemboran dipompakan ke dalam pipa bor yang akan disemprotkan keluar melalui nozzle pada pahat dan kembali ke permukaan melalui ruang antara pipa dan lubang. Lumpur pemboran akan mengangkat potongan-potongan batu yang dibuat oleh pahat (disebut cuttings) ke permukaan. Hal ini mencegah penumpukan serbuk bor di dasar lubang. selama pemboran, lubang sumur selalu penuh terisi lumpur pemboran untuk mencegah mengalirnya fluida seperti air, gas atau minyak dari batuan bawah tanah ke lubang sumur. Jika minyak atau gas dapat mengalir ke permukaan saat pemboran, akan menyebabkan kebakaran. Bahkan jika hanya air yang mengalir saja dapat menggugurkan lubang dan membuat kita kehilangan sumur. dengan adanya lumpur pemboran, fluida ini tertahan berada di dalam batuan. pemboran sumur di lepas pantai hampir sama dengan pemboran di daratan. Untuk sumur wildcat di lepas pantai, rig dinaikkan di atas barge, anjungan (platform) terapung, atau kapal yang dapat berpindah. apabila lapangan lepas pantai sudah ditentukan, anjungan (platform) produksi akan dipasang untuk membor sumur-sumur lainnya dan memproduksi migas.



Karena lumpur pemboran menjaga agar migas tetap berada di dalam batuan, cadangan migas bawah tanah pun dapat dibor tanpa mengindikasikan adanya migas, sehingga diperlukan evaluasi sumur dengan cara menurunkan peralatan rekam wireline. Truk alat rekam dipanggil, menurunkan tabung berisi instrumen yang disebut sonde ke dalam lubang sumur. ketika sonde diangkat keluar lubang, instrumen akan merekam secara elektrik, suara dan radioaktif sifat-sifat batuan dan fluida yang dilaluinya. Pengukuran ini direkam pada kertas panjang bergaris yang disebut well log. well log ini memberi informasi tentang komposisi lapisan batuan, pori-pori, dan fluida yang mungkin ada di dalamnya.

Dari hasil pembacaan well log, sumur dapat saja ditutup dan ditinggalkan sebagai sumur kering atau diselesaikan untuk diproduksikan. pemasangan pipa produksi adalah cara awal menyelesaikan sumur. untuk memasang pipa, pipa baja panjang yang bergaris tengah besar (disebut selubung atau casing) dimasukkan ke dalam sumur. Semen basah dipompakan ke dalam ruang antara casing dan dinding sumur hingga mengeras untuk menjaga lubang sumur. pada kebanyakan sumur, pemasangan casing bertahap yang disebut casing program dilakukan sebagai berikut: bor sumur, pasang casing, bor lebih dalam, pasang casing lagi, bor lebih dalam lagi, dan pasang casing lagi.




Fungsi Lumpur Pemboran.

Menurut Preston L. Moore (1974), lumpur pemboran mulai dikenal pada sekitar tahun 1900-an bersamaan dengan dikenalnya pemboran rotari. Pada mulanya tujuan utama dari lumpur pemboran adalah untuk mengangkat serbuk bor secara kontinyu. Dengan berkembangnya zaman, banyak fungsi-fungsi tambahan yang diharapkan dari lumpur pemboran. Banyak additif dengan berbagai fungsi yang ditambahkan kedalamnya, menjadikan lumpur pemboran yang semula hanya berupa fluida sederhana menjadi campuran yang kompleks antara fluida, padatan dan bahan kimia.



Dari adanya perkembangan dalam penggunaan lumpur hingga saat ini, fungsi-fungsi utama dari lumpur pemboran yang diharapkan adalah sebagai berikut:

1. Mengendalikan tekanan formasi.
2. Mengangkat serbuk bor kepermukaan dan membersihkan dasar lubang bor.
3. Memberi dinding pada lubang bor dengan mud-cake.
4. Melumasi dan mendinginkan rangkaian pipa pemboran.
5. Menahan padatan dari formasi dan melepaskannya dipermukaan.

Masing-masing fungsi akan dijelaskan satu persatu. Dan dalam penulisan ini yang berkaitan erat dengan judul penulisan adalah fungsi yang nomor kedua dari kelima fungsi utama dari lumpur pemboran tersebut.

1. Mengendalikan Tekanan Formasi

Tekanan formasi umumnya adalah sekitar 0,465 psi/ft. Pada tekanan yang normal, air dan padatan pada pemboran telah dapat untuk menahan tekanan formasi ini. Untuk tekanan yang lebih kecil dari normal (sub-normal) densitas lumpur harus diperkecil supaya perolehan hilang lumpur atau loss circulation tidak terjadi. Tetapi sebaliknya untuk tekanan yang lebih besar dari tekanan normal maka penambahan barite sebagai pemberat perlu dilakukan.

2. Mengangkat Serbuk Bor ke Permukaan dan Membersihkan Dasar Lubang Bor.

Pembersihan lubang bor adalah fungsi pokok dari lumpur pemboran. Fungsi ini juga paling sering dilalaikan dan salah dinterpretasikan. Serbuk bor biasanya mempunyai SG sekitar 2,3 samapai 3,0 dan rata-rata adalah 2,5. Jika serbuk bor lebih berat dari lumpur, maka serbuk bor akan jatuh dengan kecepatan yang disebut dengan kecepatan slip.

Kecepatan slip dari serbuk bor dalam aliran fluida, dipengaruhi secara langsung oleh sifat fisik lumpur antara lain kekentalan fluida. Jadi jika kecepatan lumpur di annulus dibatasi oleh kemampuan pompa atau pembesaran lubang, maka lumpur perlu dikentalkan untuk mengurangi kecepatan slip serbuk bor agar lubang bor tetap bersih. Keberhasilan pengangkatan juga dipengaruhi oleh luasan permukaan atau bentuk daripada partikel serbuk bor, semakin besar luasan dari partikel, maka gaya angkat fluida meneruskan tenaga dorong dari pompa akan semakin bagus sehingga kecepatan slip serbuk bor juga bisa dikurangi dengan memperbaiki sifat-sifat fisik lumpur, disamping itu juga mengoptimalkan tekanan pemompaan. Bentuk fisik daripada partikel serbuk bor tergantung juga kepada jenis formasi yang ditembus.

Pada aliran laminer kecepatan fluida pada sisi dinding lubang bor sangatlah kecil sehingga efek torsi mudah terjadi karena ujung alirannya yang parabolik, hal ini akan menyebabkan serbuk bor mudah jatuh lagi ke dasar lubang bor, ini akan dapat menghambat berhasilnya pengangkatan serbuk bor. Pengangkatan serbuk bor akan mendapatkan hasil yang lebih bagus dengan menggunakan aliran turbulen, karena distribusi kecepatannya datar bukan parabolik seperti pada aliran laminer.
Kekurangannya adalah mudah terjadi pengikisan lubang bor bila formasi yang ditembus tidak kompak, hal ini akan mengakibatkan runtuhnya dinding lubang bor yang menyebabkan semakin mengendapnya serbuk bor dan tidak terangkatnya serbuk bor dengan baik.

Lumpur dasar air dapat dikentalkan dengan menambahkan bentonite, dengan menambahkan banyak padatan, dengan flokulasi padatan atau dengan additif khusus. Jadi ada beberapa pilihan, dan penentuan pilihan tergantung dari tujuan lain yang ingin dicapai. Bentonite adalah pilihan yang murah, tetapi jika ada masalah hilang air, maka harus ditambah pengencer untuk mencegah flokulasi.

Hasil yang didapat mungkin hanyalah sedikit penambahan pada kapasitas pengangkatan dan masalah dalam lubang tetap terjadi. Penambahan banyak padatan akan menaikkan densitas, pilihan ini tidak dianjurkan jika tidak digunakan untuk tujuan mengontrol tekanan. Penerapan flokulasi lumpur adalah pilihan yang mudah dan murah, tetapi juga dibatasi oleh masalah hilang air. Additif khusus mungkin merupakan pilihan yang paling tepat, tetapi hal ini akan menaikkan biaya lumpur.

Lumpur pemboran yang baik untuk pembersihan dasar sumur apabila memiliki karakteristik mengencer akibat gesekan (shear thining) yang baik, karena semakin bersih lubang bor berarti semakin bagus pula pengangkatan serbuk bornya sampai kepermukaan.

3. Memberi dinding Pada Lubang Bor Dengan Mud Cake.

Lumpur akan membuat mud cake atau lapisan zat padat tipis didinding formasi permeabel (lulus air), pembentukan mud cake ini akan menyebabkan tertahannya aliran fluida masuk ke formasi (adanya aliran yang masuk yaitu cairan plus padatan menyebabkan padatan tertinggal/tersaring). Mud Cake yang dikehendaki adalah mud cake yang tipis karena dengan demikian lubang bor tidak dipersempit dan cairan tidak banyak yang hilang. Sifat wall building ini dapat diperbaiki dengan penambahan :

a. Sifat koloid drilling mud dengan bentonite.
b. Memberi zat kimia untuk memperbaiki distribusi zat padat dalam lumpur dan memperkuat mud cake.

4. Melumasi dan Mendinginkan Pahat.

Panas yang ditimbulkan terjadi karena gesekan pahat serta drillstring dengan formasi. Konduksi formasi umumnya kecil, sehingga sukar sekali menghilangkan panas dalam waktu cepat, tetapi umumnya dengan adanya aliran lumpur telah cukup untuk mendinginkan sistem serta melumasi pahat. Umur pahat bisa lebih lama sehingga biaya pergantian pahat bisa ditekan, karena dengan tertembusnya formasi yang cukup keras, kalau tidak terlumasi dengan baik, bit akan cepat tumpul sehingga daya tembusnya menjadi lambat dan memperlambat proses pemboran.

5. Menahan Padatan Dari Formasi dan Melepaskannya di Permukaan.

Lumpur pemboran yang baik mempunyai sifat tixotropi yang menyebabkan partikel-partikel padatan dapat dibawa sampai kepermukaan, dan menahannya didalam lumpur selama sirkulasi berhenti. Kemampuan lumpur untuk menahan serbuk bor selama sirkulasi dihentikan terutama tergantung terhadap gel strength, dengan cairan menjadi gel tekanan terhadap gerakan serbuk bor kebawah dapat dipertinggi. Serbuk bor dapat ditahan agar tidak turun kebawah, karena bila ia mengendap dibawah bisa menyebabkan akumulasi serbuk bor dan pipa akan terjepit. Selain itu ini akan memperberat kerja pompa untuk memulai sirkulasi kembali. Tetapi gel yang terlalu besar akan berakibat buruk juga, karena akan menahan permbuangan serbuk bor dipermukaan (selain pasir). Penggunaan alat seperti desander dan shale shaker dapat membantu pengambilan serbuk bor dari lumpur dipermukaan. Patut ditambahkan bahwa pasir harus dibuang dari lumpur karena sifatnya yang abrassive pada pompa, sambungan-sambungan

Jumat, 12 Juni 2009

Pentingnya Logging

Pentingnya Logging


Logging adalah teknik untuk mengambil data-data dari formasi dan lubang sumur dengan menggunakan instrumen khusus. Pekerjaan yang dapat dilakukan meliputi pengukuran data-data properti elektrikal (resistivitas dan konduktivitas pada berbagai frekuensi), data nuklir secara aktif dan pasif, ukuran lubang sumur, pengambilan sampel fluida formasi, pengukuran tekanan formasi, pengambilan material formasi (coring) dari dinding sumur, dsb.


Logging tool (peralatan utama logging, berbentuk pipa pejal berisi alat pengirim dan sensor penerima sinyal) diturunkan ke dalam sumur melalui tali baja berisi kabel listrik ke kedalaman yang diinginkan. Biasanya pengukuran dilakukan pada saat logging tool ini ditarik ke atas. Logging tool akan mengirim sesuatu “sinyal” (gelombang suara, arus listrik, tegangan listrik, medan magnet, partikel nuklir, dsb.) ke dalam formasi lewat dinding sumur. Sinyal tersebut akan dipantulkan oleh berbagai macam material di dalam formasi dan juga material dinding sumur.



Pantulan sinyal kemudian ditangkap oleh sensor penerima di dalam logging tool lalu dikonversi menjadi data digital dan ditransmisikan lewat kabel logging ke unit di permukaan. Sinyal digital tersebut lalu diolah oleh seperangkat komputer menjadi berbagai macam grafik dan tabulasi data yang diprint pada continuos paper yang dinamakan log. Kemudian log tersebut akan diintepretasikan dan dievaluasi oleh geologis dan ahli geofisika. Hasilnya sangat penting untuk pengambilan keputusan baik pada saat pemboran ataupun untuk tahap produksi nanti.







Logging-While-Drilling (LWD) adalah pengerjaan logging yang dilakukan bersamaan pada saat membor. Alatnya dipasang di dekat mata bor. Data dikirimkan melalui pulsa tekanan lewat lumpur pemboran ke sensor di permukaan. Setelah diolah lewat serangkaian komputer, hasilnya juga berupa grafik log di atas kertas. LWD berguna untuk memberi informasi formasi (resistivitas, porositas, sonic dan gamma-ray) sedini mungkin pada saat pemboran.


Mud logging adalah pekerjaan mengumpulkan, menganalisis dan merekam semua informasi dari partikel solid, cairan dan gas yang terbawa ke permukaan oleh lumpur pada saat pemboran. Tujuan utamanya adalah untuk mengetahui berbagai parameter pemboran dan formasi sumur yang sedang dibor.

Oil and Gas Traps (Perangkap Minyak dan Gas)

Dalam Sistem Perminyakan, memiliki konsep dasar berupa distribusi hidrokarbon didalam kerak bumi dari batuan sumber (source rock) ke batuan reservoar. Salah satu elemen dari Sistem Perminyakan ini adalah adanya batuan reservoar, dalam batuan reservoar ini, terdapat beberapa faktor penting diantaranya adalah adanya perangkap minyak bumi.

Perangkap minyak bumi sendiri merupakan tempat terkumpulnya minyak bumi yang berupa perangkap dan mempunyai bentuk konkav ke bawah sehingga minyak dan gas bumi dapat terjebak di dalamnya.

Perangkap minyak bumi ini sendiri terbagi menjadi Perangkap Stratigrafi, Perangkap Struktural, Perangkap Kombinasi Stratigrafi-Struktur dan perangkap hidrodinamik.

Kamis, 11 Juni 2009

Metode Geofisika

METODE GEOFISIKA

Geofisika adalah bagian dari ilmu bumi yang mempelajari bumi menggunakan kaidah atau prinsip-prinsip fisika. Di dalamnya termasuk juga meteorologi, elektrisitas atmosferis dan fisika ionosfer. Penelitian geofisika untuk mengetahui kondisi di bawah permukaan bumi melibatkan pengukuran di atas permukaan bumi dari parameter-parameter fisika yang dimiliki oleh batuan di dalam bumi. Dari pengukuran ini dapat ditafsirkan bagaimana sifat-sifat dan kondisi di bawah permukaan bumi baik itu secara vertikal maupun horisontal.

Dalam skala yang berbeda, metode geofisika dapat diterapkan secara global yaitu untuk menentukan struktur bumi, secara lokal yaitu untuk eksplorasi mineral dan pertambangan termasuk minyak bumi dan dalam skala kecil yaitu untuk aplikasi geoteknik (penentuan pondasi bangunan dll).

Beberapa contoh kajian dari geofisika bumi padat misalnya seismologi yang mempelajari gempabumi, ilmu tentang gunungapi (Gunung Berapi) atau volcanology, geodinamika yang mempelajari dinamika pergerakan lempeng-lempeng di bumi, dan eksplorasi seismik yang digunakan dalam pencarian hidrokarbon.



1. Metode Elektromagnetotelurik

Metode elektromagnetotelurik merupakan metode geofisika yang sangat populer dan sering digunakan dalam survey geologi, rekayasa, dan arkeologi dalam segala variasi. Akan tetapi, analisa data dan pemodelan biasanya dilakukan setelah kembali ke base camp atau laboratorium. Jika data dapat diproses secepat proses akuisisi, maka kita dapat memodifikasi konfigurasi atau distribusi titik pengamatan di lapangan jika diperlukan, sehingga akan lebih menghemat waktu dan biaya. Untuk keperluan tersebut, maka dikembangkan suatu cara transformasi untuk mempercepat proses analisis data, terutama untuk jumlah data yang sangat besar.

Inversi Bostick merupakan teknik yang sederhana dan cepat untuk analisis kurva sounding tahanan jenis semu dan fasa dari data megnetotelurik (MT). Pada metode transformasi tersebut informasi mengenai kedalaman diperoleh dari frekuensi pengukuran atau waktu untuk metoda elektromagnet berdasarkan prinsip skin-depth. Kemudian tahanan jenis semu pengukuran ditransformasikan menjadi tahanan jenis efektif sehingga diperoleh tahanan jenis sebagai fungsi dari kedalaman.
Tugas akhir ini membahas modifikasi transformasi Bostick berdasarkan kajian empiris menggunakan model-model sintesis yang dilakukan Meju (1995). Hal ini dimaksudkan agar diperoleh hasil transformasi berupa tahanan jenis sebagai fungsi dari kedalaman yang lebih realistis. Hasil modifikasi transformasi Bostick diuji menggunakan data magnetotelurik sintesis 1-D dan 2-D. Struktur 2-D dapat diidentifikasi menggunakan inversi data magnetotelurik 1-D selama struktur tersebut tidak terlalu jauh menyimpang dari model 1-D (berlapis horisontal).

2. Metode Geo-radar

Metode Georadar atau disebut juga dengan metoda Elektromagnetik Subsurface Profilling merupakan salah satu metode Geofisika untuk memetakan bawah permukaan yang relatif dangkal. Metoda ini menggunakan prinsip-prinsip gelombang elektromagnetik yang kedalaman penetrasi dan besarnya amplitudo yang terekam sangat tergantung pada sifat kelistrikan dari batuan/media bawah permukaan dan frekuensi peralatan yang digunakan.

Warna penampang vertikal atau citra rekaman georadar tersebut menunjukkan sinyal yang terekam. Warna hitam berarti sinyal yang terekam cukup tinggi, warna putih berarti sinyalnya sangat lemah (tidak ada sinyal). Sedangkan sinyal antaranya ditunjukkan oleh abu-abu (skala abu-abu). Intensitas sinyal ini sebanding juga dengan amplitudo gelombang pantul yang berkaitan dengan kontras konduktivitas.
Untuk menunjang interpretasi secara kualitatif, distribusi harga amplitudo yang berkaitan dengan konduktivitas yang terekam diklasifikasikan dalam bentuk warna dengan menggunakan beberapa perangkat lunak. Hal ini diterapkan untuk kasus sedimen lempung dengan hasil yang cukup memadai.

3. Metode Seismik

Metoda seismik adalah salah satu metoda eksplorasi yang didasarkan pada pengukuran respon gelombang seismik (suara) yang dimasukkan ke dalam tanah dan kemudian direleksikan atau direfraksikan sepanjang perbedaan lapisan tanah atau batas-batas batuan. Sumber seismik umumnya adalah palu godam (sledgehammer) yang dihantamkan pada pelat besi di atas tanah, benda bermassa besar yang dijatuhkan atau ledakan dinamit. Respons yang tertangkap dari tanah diukur dengan sensor yang disebut geofon, yang mengukur pergerakan bumi.

Metode seismik merupakan salah satu bagian dari seismologi eksplorasi yang dikelompokkan dalam metode geofisika aktif, dimana pengukuran dilakukan dengan menggunakan sumber seismic (palu, ledakan, dll). Setelah usikan diberikan, terjadi gerakan gelombang di dalam medium (tanah/batuan) yang memenuhi hukum-hukum elastisitas ke segala arah dan mengalami pemantulan ataupun pembiasan akibat munculnya perbedaan kecepatan. Kemudian, pada suatu jarak tertentu, gerakan partikel tersebut di rekam sebagai fungsi waktu. Berdasar data rekaman inilah dapat diperkirakan bentuk lapisan/struktur di dalam tanah.

Eksperimen seismik aktif pertama kali dilakukan pada tahun 1845 oleh Robert Mallet, yang oleh kebanyakan orang dikenal sebagai bapak seismologi instrumentasi. Mallet mengukur waktu transmisi gelombang seismik, yang dikenal sebagai gelombang permukaan, yang dibangkitkan oleh sebuah ledakan. Mallet meletakkan sebuah wadah kecil berisi merkuri pada beberapa jarak dari sumber ledakan dan mencatat waktu yang diperlukan oleh merkuri untuk be-riak. Pada tahun 1909, Andrija Mohorovicic menggunakan waktu jalar dari sumber gempa bumi untuk eksperimennya dan menemukan keberadaan bidang batas antara mantel dan kerak bumi yang sekarang disebut sebagai Moho.

Pemakaian awal observasi seismik untuk eksplorasi minyak dan mineral dimulai pada tahun 1920an. Teknik seismik refraksi digunakan secara intensif di Iran untuk membatasi struktur yang mengandung minyak. Tetapi, sekarang seismik refleksi merupakan metode terbaik yang digunakan di dalam eksplorasi minyak bumi. Metode ini pertama kali didemonstrasikan di Oklahoma pada tahun 1921.

Macam metoda seismik

Terdapat dua macam metoda dasar seismik yang sering digunakan, yaitu seismik refraksi dan seismik refleksi.

1. Seismik refraksi (bias)

Metoda seismik refraksi mengukur gelombang datang yang dipantulkan sepanjang formasi geologi di bawah permukaan tanah. Peristiwa refraksi umumnya terjadi pada muka air tanah dan bagian paling atas formasi bantalan batuan cadas. Grafik waktu datang gelombang pertama seismik pada masing-masing geofon memberikan informasi mengenai kedalaman dan lokasi dari horison-horison geologi ini. Informasi ini kemudian digambarkan dalam suatu penampang silang untuk menunjukkan kedalaman dari muka air tanah dan lapisan pertama dari bantalan batuan cadas.

Seismik bias dihitung berdasarkan waktu jalar gelombang pada tanah/batuan dari posisi sumber ke penerima pada berbagai jarak tertentu. Pada metode ini, gelombang yang terjadi setelah usikan pertama (first break) diabaikan, sehingga sebenarnya hanya data first break saja yang dibutuhkan. Parameter jarak (offset) dan waktu jalar dihubungkan oleh sepat rambat gelombang dalam medium. Kecepatan tersebut dikontrol oleh sekelompok konstanta fisis yang ada di dalam material dan dikenal sebagai parameter elastisitas.

2. Seismik refleksi

Metoda seismik refleksi mengukur waktu yang diperlukan suatu impuls suara untuk melaju dari sumber suara, terpantul oleh batas-batas formasi geologi, dan kembali ke permukaan tanah pada suatu geophone. Refleksi dari suatu horison geologi mirip dengan gema pada suatu muka tebing atau jurang.Metoda seismic repleksi banyak dimanfaatkan untuk keperluan Explorasi perminyakan, penetuan sumber gempa ataupun mendeteksi struktur lapisan tanah.

Seismic refleksi hanya mengamati gelombang pantul yang datang dari batas-batas formasi geologi. Gelombang pantul ini dapat dibagi atas beberapa jenis gelombang yakni: Gelombang-P, Gelombang-S, Gelombang Stoneley, dan Gelombang Love.

Sedangkan dalam seismik pantul, analisis dikonsentrasikan pada energi yang diterima setelah getaran awal diterapkan. Secara umum, sinyal yang dicari adalah gelombang-gelombang yang terpantulkan dari semua interface antar lapisan di bawah permukaan. Analisis yang dipergunakan dapat disamakan dengan echo sounding pada teknologi bawah air, kapal, dan sistem radar. Informasi tentang medium juga dapat diekstrak dari bentuk dan amplitudo gelombang pantul yang direkam. Struktur bawah permukaan dapat cukup kompleks, tetapi analisis yang dilakukan masih sama dengan seismik bias, yaitu analisis berdasar kontras parameter elastisitas medium.


Perbandingan metode seismik dengan metode geofisika lainnya

Keunggulan :

1.Dapat mendeteksi variasi baik lateral maupun kedalaman dalam parameter fisis yang relevan, yaitu kecepatan seismik.
2.Dapat menghasilkan citra kenampakan struktur di bawah permukan

3.Dapat dipergunakan untuk membatasi kenampakan stratigrafi dan beberapa kenampakan pengendapan.

4.Respon pada penjalaran gelombang seismik bergantung dari densitas batuan dan konstanta elastisitas lainnya. Sehingga, setiap perubahan konstanta tersebut (porositas, permeabilitas, kompaksi, dll) pada prinsipnya dapat diketahui dari metode seismik.
5.Memungkinkan untuk deteksi langsung terhadap keberadaan hidrokarbon

Kelemahan :

1.Banyaknya data yang dikumpulkan dalam sebuah survei akan sangat besar jika diinginkan data yang baik
2.Perolehan data sangat mahal baik akuisisi dan logistik dibandingkan dengan metode geofisika lainnya.
3.Reduksi dan prosesing membutuhkan banyak waktu, membutuhkan komputer mahal dan ahli-ahli yang banyak.
4.Peralatan yang diperlukan dalam akuisisi umumnya lebih mahal dari metode geofisika lainnya.
5.Deteksi langsung terhadap kontaminan, misalnya pembuangan limbah, tidak dapat dilakukan.

Akumulasi Minyak dan Gas Bumi

AKUMULASI MINYAK DAN GAS BUMI

Seperti telah kita ketahui bersama bahwa minyak dan gas bumi berakumulasi pada suatu perangkap yang merupkan bagian tertinggi dari lapisan reservoir. Akan tetapi apakah yang menyebabkan minyak dan gas bumi berhenti disana? Ada 2 teori yang menjelaskan pertanyaan itu adalah sebagai berikut :

1.1 TEORI AKUMULASI GUSSOW

Dalam keadaan hidrostatik, akumulasi dapat diterangkan oleh teori Gussow (1951). Gumpalan atas tetes-tetes minyak dan gas akan bergerak sepanjang bagian atas lapisan penyalur keatas, terutama disebabkan pelampungan (buoyancy). Begitu sampai di sustu perangkap (dalam hal ini perangkap struktur), minyak dan gas akan menambah kolom gas dan mendesak minyak kebawah yang juga bertambah tinggi kolomnya dan gilirannya mendesak air ke bawah. Hal ini akan terus terjadi sampai batas minyak – air mencapai ‘Spill point’. Penambahan minyak – dan gas terus menerus akan menyebabkan perlimpahan (Spilling) minyak keatas ke struktur selanjutnya (fasa dua). Pada fasa berikutnya, berhubungan penambahan gas, maka seluruh minyak didesak gas kebawah sehingga melimpah sampai habis dan perangkap diisi sepenuhnya oleh gas.

Stadium 1 : Gas, minyak dan air diatas titik limpah, minyak dan gas kedua-duanya terus menerus terjebak sedangkan air disingkirkan. Stadium ini berhenti jika antara muka minyak-air mencapai titik limpah.

Stadium 2 : Stadium penyebaran selektif dan pengasiran gas. Gas terus dijebak, selagi minyak melimpah keatas kemiringan. Stadium ini berakhir jika antara muka minyak-gas mencapai titk limpah dan berhimpitan dengan antar muka minyak.

Stadium 3 : Stadium Akhir. Perangkap diisi oleh gas. Gas melimpah ketas selagi lebih banyak gas yang masuk perangkap. Minyak melewati perangkap dan meneruskan perjalannya ke atas kemiringan.

Gambar 1 : Differensiasi minyak dan gas dalam perangkap yang menyebabkan minyak melimpah. (Gussow, 1951)

Pada gambar II, terlihat bagaimana mekanisme ini menyebabkan penyebaran akumulasi minyak dan gas pada sejumlah perangkap yang berderetan dan pada ketinggian strukturil yang berbeda. Terisinya suatu perangkap oleh gas, minyak dan sebagainya tergantung dari arah migrasi, dan jumlah minyak dan gas yang bermigrasi.
Yang pertama ini dibandingkan sebagai E, D, dan C. Sedangkan untuk yang kedua diilustrasikan oleh A, B dan C.
Terlihat pada gambar bahwa tergantung dari arah batuan induk, maka yang paling dekat akan terisi oleh gas, sedangkan yang paling jauh diisi oleh air.
Perangkap I Diisi sampai titik limpah dan mempunyai tudung gas. Hanya minyak melimpah keatas ke
Perangkap II.
Perangkap III dan IV penuh dengan air asin dan mengandung minyak atau gas.

Perangkap I seluruhnya diisi dengan gas, seluruh minyaknya telah terusir masuk keperangkap II. Minyak sekarang melebihi perangkap I.
Perangkap II telah diisi minyak dan melimpahkan keatas kemiringan ke dalam perangkap III, yang masih belum mengandung tudung gas.
Perangkap III mengandung hanya sedikit miinyak, sedangkan perangkap IV masih terisi air asin.

Perangkap I tak berubah dengan gas melimpah keatas kemiringan ke dalam perangkap II, Minyak melewati perangkap I. Perangkap II sekarang mempunyai tudung gas dan melimpahkannya ke atas kemiringan ke dalam perangkap III. Perangkap III sekarang telah terisi dengan minyak tetapi masih tetap belum mempunyai tudung gas dan melimpahkan minyak kedalam perangkap III. Perangkap IV masih terisi air asin.



Migrasi sama seperti untuk C, tetapi dalam keadaan hubungan struktur yang lain. Perhatikan bahwa ketinggian kulminasi tidak mempunyai efek terhadap penjebakan selektif, ketinggian titik limpah adalah yang mengendalikan. Ketinggian kulminasi diatas titik limpah menentukan kalau minyak maximum.

Migrasi sama seperti untuk C. Disini semua kaulminasi berada pada ketinggian yang sama. Titik limpah mengendalikan penjebakan differensial.

Gambar II. Penyebaran minyak dan gas pada deretan struktur karena penjebakan pemisahan differensial (Menurut Gussow, 1951)

1..2 TEORI AKUMULASI KING HUBBERT (1953)
King Hubbert (1953) meninjau prinsip akumulasi minyak bumi dari segi kedudukan energi potensial, dan erat hubungannya dengan perangkap hidrodinamik. Dalam hal ini minyak bumi, baik dalam bentuk tetes – tetes maupun fasa yang menerus yang berada dalam lingkungan air, akan akan selalu mencari batuan reservoir yang terisolir dan secara local mempunyai potensial terendah. Medan potensial dalam suatu reservoir yang terisi air merupakan resultan dari dua gaya, yaitu (1) gaya pelampungan (buoyancy), dan (2) gaya yang disebabkan gradient hidrodinamik. Seperti gambar berikut ini.
Keterangan :
A. Penampang Geologi untuk memperlihatkan terjadinya gradien – hidrodinamik karena permukaan potensiometri.
B. Resultan gaya pelampungan dan gradient hidrodinamik serta bidang ekipotensial minyak yang miring.

Dalam pengertian ini, minyak dan gas bumi akan berakumulasi jika bidang ekipotensial yang tegak lurus terhadap garis gaya resultan gaya tadi menutup seluruhnya dari bawah suatu daerah potensial rendah lokasi yang terisolir, misalnya suatu antiklin, suatu pelengkungan ataupun struktur lainnya dimana lapisan reservoir dan lapisan penyekat diatas konkav kearah bawah.

Dengan konsepsi diatas, maka suatu akumulasi dapat terjadi serta hilang atau terusir, dengan terdapatnya suatu gradient hidrodinamik yang pada setiap saat geologi arah serta besarnya ( vektornya dapat berubah ). Dalam keadaan itu maka paling tidak posisi batas air – minyak atau air – gas itu miring. Akumulasi minyak dan gas bumi merupakan suatu keseimbangan yang dinamis.

2..2 WAKTU PENJEBAKAN
Penentuan waktu dalam sejarah geologi mengenai kapan minyak bumi dapat terjebak, bukan saja penting dari segi ilmiah akan tetapi juga dari segi ekonomi. Suatu perangkap dapat terisi atau kosong tergantung dari waktu pembentukannya ataupun kapan minyak itu terbentuk berada dalam keadaan dapat dijebak oleh perangkap. Pengertian yang baik mengenai hal ini akan sangat membantu evaluasi suatu prospek ( Landes 1959 ). Ada beberapa bukti yang menerangkan bahwa minyak bumi terjebak pada permulaan sejarah pembentukan perangkap misalkan dalam hal lensa-lensa pasir tetapi dapat pula difahami bahwa minyak bumi dapat bermigrasi ke perangkap yang terbentuk kemudian. Perangkap dapat terbentuk lama setelah minyak tidak dapat bermigrasi lagi, sehingga perangkap tersebut akan kosong. Rittenhouse ( 1967) dalam dott dan Reynolds ( 1969 ) memberikan kriteria untuk mengetahui waktu akumulasi. Berbagai metodenya memberikan informasi hal – hal sebagai berikut :
a. Waktu tercepat dimulainya akumulasi.
b. Waktu tercepat dapat terselesaikannya akumulasi.
c. Waktu paling lambat dapat terselesaikannya akumulasi.

Hal – hal tersebut dapat dipertimbangkan dari beberapa faktor sebagai berikut :
1) Waktu Pembentukan Perangkap.
Waktu pembentukan perangkap adalah waktu tercepat minyak dapat berakumulasi. Tetapi tentu minyak dapat bermigrasi setiap waktu setelah pembentukan perangkap tadi. Dalam hal kondisi patahan – tumbuh, akumulasi dapat terjadi bersamaan dengan pembentukan batuan reservoir. Juga hal yang sama berlaku untuk lensa – lensa batuan reservoir.
Cara menentukan ada tidaknya perangkap pada waktu migrasi dan pembentukan minyak bumi yaitu dengan membuat perangkap struktur yang digantungkan pada suatu lapisan sumur tersebut sebagai datum. Dengan cara yang sama suatu peta struktur berkontur dapat dibuat dan ada tidaknya tutupan pada zaman tersebut dapat ditentukan.
2) Perangkap Yang Terisi dan Kosong.
Terdapat kemungkinan perangkap yang terisi dibentuk terlebih dahulu dan perangkap yang kosong terbentuk kemudian, setelah migrasi sekunder berhenti.
3) Expansi Gas.
Hal ini dikemukakan oleh leverson (1956) yang mendasarkannya pada hokum Boyle dan Charles. Gas mengembang jika tekanan turun. Kedalaman (waktu) pada saat volum reservoir sama dengan volum minyak dan gas sekarang pada tekanan dari temperature lebih rendah, adalah kedalaman tercetak (waktu) pada saat akumulasi telah selesai.
4) Minyak dibawah Penjenuhan.
Anggapan dasar dari kriteria ini adalah bahwa minyak telah jenuh dengan gas pada waktu akumulasi telah selesai. Jika terdapat reservoir dengan minyak yang tidak jenuh minyak ( tidak ada tutup/ topi gas ) maka hal ini dapat diterangkan sebagai berikut. Pada pembebanan dan penguburan setelah akumulas, maka minyak dalam reservoir akan tidak jenuh, karena peningkatan tekanan akan melarutkan gas bebas kedalam minyak. Pada pengangkatan dan erosi lapisan yang menutupi reservoir akan terjadi ha sebaliknya dan gas akan keluar membentuk topi gas.Namun metode penentuan ini memiliki banyak kelemahan dan anggapan – anggapannya belum tentu benar.sehingga hasilnya meragukan ( hoshkin, 1960 ).
5) Topi Gas yang Berkelalaian
Hal ini diberikan oleh Levorsen ( 1950 ) untuk keadaan special. Topi gas yang tinggi dalam blok yang turun dalam perangkap patahan menunjukkan akumulasi gas sebelum pematahan.
6) Difusi Gas Dalam Reservoir Yang Sebagian Terpisah dan Tak Jenuh.
( Zafferano, Capps dan Fry, 1963 ). Difusi gas akan terjadi diantara reservoir yang demikian dari yang jenuh menuju yang kurang jenuh dan waktu yang diperlukan untuk hubungan sekarang dapat dihitung.
7) Metoda Energi (oleh para Ilmuwan Uni Soviet ).
Adalah pengukuran kehilangan nilai energi dari minyak dalam reservoir sepanjang waktu.
Mineral Diagenesa
Mineral Diagenesa akan menurunkan porositas karena sementasi dan kompaksi. Jika Minyak bumi yang terdapat menghalang – halangi proses tersebut, maka jelas akumulasi terjadi sebelum diagenesa dalam reservoir basah air yang ada didekatnya. Sering hal ini ditunjukkan oleh tekanan tinggi dalam reservoir.
9) Sementasi Organik
Yang dimaksud sementasi Organik disini terutama adalah semen aspal. Waktu akumulasi adalah sebelum pengorosian bidang ketidakselarasan.

Dari uraian tersebut diatas disimpulkan bahwa minyak bumi tidak terjadi pada waktu tertentu di dalam evolusi minyak bumi. Setalah berakumulasi di suatu perangkap, minyak bumi dapat bermigrasi lagi ke perangkap yang terbentuk kemudian. Sebagai contoh misalnya akumulasi minyak bumi di daerah cepu (Soetantri dan lain-lain, 1973 ). Di daerah ini pelipatan utama dan intensif terjadi pada akhir Pleistosen.
Akan tetapi kedalaman penguburan dari batuan induk yang meliputi struktur itu tidak memungkinkan pembentukan dan migrasi minyak bumi ke struktur muda.

Dilain Pihak suatu fasa pelipatan yang lebih tua telah terjadi pada akhir pliosen dan kemudian pada waktu transgresi pleistosen, penguburan telah cukup dalam untuk pembentukan dan migrasi minyak bumi ke dalam sejumlah perangkap kecil yang telah ada terlebih dahulu. Jadi kombinasi antara kedalaman pembebanan dan umur pelipatan dapat menentukan apakah suatu perangkap itu terisi penuh atau tidak. (Imam J.)